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ABSTRACT 
The closed-form analytical expressions for the displacements and strains due to Compensated Linear Vector 

Dipole (CLVD) located in a homogeneous, isotropic poroelastic half-space are obtained. The variation of radial 

displacement and strains with depth & variation of radial displacement and strains with epicentral distance for 

the various materials Ruhr Sandstone, Tennessee Marble, Charcoal Granite, Berea Sandstone and Westerly 

Granite are discussed. 
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I. INTRODUCTION 

A moment tensor is usually diagonalized and decomposed into some elementary parts. It can be decomposed 

into its isotropic (ISO) and deviatoric (DEV) parts. The double-couple (DC) and CLVD components often are 

described collectively as the deviatoric component. The total moment-tensor solution consists of an addition of 

the isotropic, double-couple, and CLVD components. The deviatoric part can be decomposed into three double 

couples by Jost and Herrmann (1989), into major and minor double couples by Kanamori and Given (1981), 

Wallace (1985) or into a double couple and a compensated linear vector dipole (CLVD) component given by 

Knopoff and Randall (1970). 

 

The most common type of the moment tensor is the double-couple (DC) source which represents the force 

equivalent of shear faulting on a planar fault in isotropic media. However, many studies reveal that seismic 

sources often display more general moment tensors with significant non-double-couple (non-DC) components 

given by Julian et al. (1998), Miller et al. (1998). An explosion is an obvious example of a non-DC source, but 

non-DC components can also be produced by a collapse of a cavity in mines by Rudajev and Šílený (1985), by 

inflation or deflation of magma chambers in volcanic areas given by Mori and McKee (1987), by shear faulting 

on a nonplanar (curved or irregular) fault, by tensile faulting induced by fluid injection when the slip vector is 

inclined from the fault and causes its opening by Vavryčuk (2001, 2011), or by shear faulting in anisotropic 

media given by Kawasaki and Tanimoto (1981), Vavryčuk (2005). 
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A purely volumetric source is known as an isotropic source (ISO) and is described by a moment tensor that 

contains equal-valued diagonal elements and zeroes for the off-diagonal elements given by Aki and Richards 

(2002). This describes the situation when one dipole is compensated by the two other dipoles, which are half the  

magnitude,  i.e., the diagonal elements have a ratio of –1: –1: 2, whereas the off-diagonal elements are zero 

given by Julian et al. (1998) .Note that a trace of M = 0 indicates absence of volumetric changes in the source; 

hence CLVD and double-couple sources have no volumetric component (i.e., no dilation). 

 

Care must be taken when interpreting a mechanism described as CLVD by the moment tensor because this also 

can be described by other possible mechanisms. For example, a CLVD mechanism can be created by two 

double-couple geometries with different moments of M0 and 2M0. CLVD components also can help to describe 

the opening or closing of a crack, along with an isotropic component given by Julian et al. (1998), in which the 

diagonal elements form a ratio of 1:1:3 for a Poisson’s ratio of 0.25 and 1:1:2 for a Poisson’s ratio of 0.35. 

Figure 1: 

 

Double couple, isotropic and CLVD sources. 

arrows at the top schematically show the corresponding force systems 

generating the source mechanisms (black) and the shear forces (red). 

 

II. THEORY 

A compensated linear vector dipole (Fig. 6.2),  Knopoff and Randall (1970)  consists of three mutually 

orthogonal dipoles with moments in the ratio (-1, -1, 2). 

Figure 2: 
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Fig. 6.2: Body forces equivalent to a compensated linear vector dipole 

 

Displacements 

Using displacement field given by Amit Kumar et al. (2012), we obtained the expressions for the displacement 

components due to Tensile Dislocation of magnitude P acting at the point (0, 0, c) in poroelastic half-space. 

The displacements for the compensated linear vector dipole are obtained on using the relations: 
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Case 1: when z ǂ 0 

Using zxrxrx  321 ;sin;cos  in eqn (7) we get 
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Strains 

Strains in cylindrical co-ordinates can be calculated using  

Using equations (4)- (6) in strain displacement relations, we obtain the following expressions of strains due to a 

compensated linear vector dipole in a poroelastic medium are obtained as
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Case 2: when z = 0 

Displacements components are given as 
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Numerical Results 

We define dimensionless epicentral distance D, dimensionless radial displacement U, dimensionless vertical 

displacement W (uplift) and dimensionless radial strain E by the relations  

 

Where    is a dimensionless constant for each source, chosen in such a manner that W=1 at r=0. 
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III. DISCUSSION AND CONCLUSION 
Analytical expressions for the displacement and strain components due to five materials namely, Ruhr 

Sandstone, Tennessee Marble, Charcoal Granite, Berea Sandstone, Westerly Granite for drained behaviour for 

compensated linear vector dipole in a poroelastic medium has been obtained. 

For analysis taking P=1, c=1, z=1, 
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  and using Table 1 

 

Table: 

Table 1. Material property 
S No Materials Poisson Ratio )~(  

) 

 

 

( ) 

)/( 2mN
 

1 Ruhr Sandstone(RS) 0.12 1.3 × 1010 

2 Tennessee Marble(TM) 0.25 4.0 × 1010 

3 Charcoal Granite(CG) 0.27 
3.5 × 1010 

4 Berea Sandstone(BS) 0.20 
8.0 × 109 

5 Westerly Granite(WG) 0.25 2.5 × 1010 

 

Fig 3 shows the variation of uplift with depth for drained behaviour of five materials i.e. RS, CG, TM, BS, WG. 

It shows that vertical displacement first increases, then decreases, follow the zigzag path and finally decreases. 

Decrease is more rapidly in case of BS as compared to TM.  

 

Fig 4 shows the variation of radial displacement with depth for drained behaviour of five materials i.e. RS, CG, 

TM, BS, WG. It shows that radial displacement decreases more rapidly in case of BS than as compared to TM 

.Hence variation for TM is less. 

 

Fig 5 shows the variation of dimensionless radial displacement with epicentral distance For all these materials 

we observe that as we move away from epicentre the displacement decrease gradually. The rate of decrease is 

more in case of RS as compared to CG. 

 

Fig 6 shows the variation of dimensionless vertical displacement (uplift) with epicentral distance. For all these 

materials, variations in vertical displacement (uplift) vary with the material. We observe that as we move away 

from epicentre the displacement decrease gradually. 
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Fig 7 shows the variation of dimensionless radial strain with epicentral distance Rate of decrease is more in case 

of RS as compared to CG. Therefore RS shows more Variation as compared to CG .Value of poisson ratio  is 

same for TM & WG. 

 

Figure 3: 

 

 Variation of vertical displacement i.e. uplift with depth 

Figure 4: 

 

Variation of radial displacement with depth
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Figure 5: 

 
Variation of radial displacement with epicentral distance 

 

 

Figure 6: 

 

Variation of vertical displacement with epicentral distance 

 

 

 

 

 

 

 

Figure 7: 
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Variation of radial strain with epicentral distance 
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